Download here: http://gg.gg/vwbfe
*Century Iv Autopilot Installation Manual
*Century Three Autopilot Installation
*Century Iii Autopilot Installation Manual
This video is a step-by-step guide on how to use the altitude select feature of the Piper Altimatic III Autopilot, currently installed in our Piper Seneca (N.AVIONICS LIBRARY
*Almost all Century IIIs were installed with manual/auto electric trim There are some potential maintenance issues: The Century III is a very old design and the earliest versions were plagued with problems due to a circuit board fabrication method that used ’griplets’ instead of plated thru-holes for connections.
*Download File PDF Century Iii B Autopilot Install Manual Century Iii B Autopilot Install 68S75 6. ROLL (AILERON) ENGAGEMENT The Century IIB incorporates a fail safe electrical engage and disengage mechanism in the roll servo which is operated by the A/P ON-OFF Rocker Switch in the console. When only this switch is.Maintenance ManualsCentury II-IIB-III Service Manual
Collins DCE-400 Maintenance Manual
Collins DME-45x Maintenance Manual
Collins TDR-35x Maintenance Manual
Collins TDR-950 Maintenance Manual
Collins VHF-25xx Maintenance Manual
Collins VIR-35x Maintenance Manual
Garmin 400 Maintenance Manual
King KA-51 Maintenance Manual
King KA-51A Maintenance Manual
King KA-51B Maintenance Manual
King KA-52 Maintenance Manual
King KA-57 Maintenance Manual
King KG-102 Maintenance Manual
King KG-102A Maintenance Manual
King KI-201-209 Maintenance Manual
King KI-204 Maintenance Manual
King KI-209A Maintenance Manual
King KI-211-214 Maintenance Manual
King KI-525 Maintenance Manual
King KI-525A Maintenance Manual
King KLN-90B Maintenance Manual
King KLX-135 Maintenance Manual
King KMA-20 Maintenance Manual
King KMT-112 Maintenance Manual
King KN-53 Maintenance Manual
King KN-62-64 Maintenance Manual
King KN-65-65A Maintenance Manual
King KN-72-75 Maintenance Manual
King KN-73-77 Maintenance Manual
King KR-87 Maintenance Manual
King KT-76-78 Maintenance Manual
King KT-76C Maintenance Manual
King KT-79 Maintenance Manual
King KTS-152 Maintenance Manual
King KTS-153 Maintenance Manual
King KX-125 Maintenance Manual
King KX-155-165 Maintenance Manual
King KX-165A Maintenance Manual
King KX-170B Maintenance Manual
King KY-196-197 Maintenance Manual
Narco AT-50-50A Maintenance Manual
Narco CP-IXX Maintenance Manual
Narco DME-195 Maintenance Manual
Narco DME-890 Maintenance Manual
Narco DME-891 Maintenance Manual
Narco MK-12-D-E Maintenance Manual
Narco Nav-10-14 Maintenance Manual
Narco Nav-110-114 Maintenance Manual
Narco Nav-121-122 Maintenance Manual
Narco Nav-824-825 Maintenance Manual
Narco UGR-2-2A Maintenance Manual
S-TEC Flight Line Service Manual
Installation ManualsCollins DCE-400 Installation Manual
Collins DME-45x Installation Manual
Collins TDR-35x Installation Manual
Collins TDR-950 Installation Manual
Collins VHF-25xx Installation Manual
Collins VIR-35x Installation Manual
DAC GDC-31 Installation Manual
Eaton 582 Series Manual
Eaton 584 Series Manual
Garmin 340 Installation Manual
Garmin 400 Installation Manual
Garmin 480 Installation Manual
Garmin GTX-327 Installation Manual
Garmin GTX-330 Installation Manual
King KCS-55A Installation Manual
King KI-201-209 Installation Manual
King KI-211-214 Installation Manual
King KLN-90B Installation Manual
King KLN-94 Installation Manual
King KLX-135 Installation Manual
King KLX-135A Installation Manual
King KMA-20 Installation Manual
King KN-53 Installation Manual
King KN-62 Installation Manual
King KN-62-64 Installation Manual
King KN-63 Installation Manual
King KN-65-65A Installation Manual
King KN-72-75 Installation Manual
King KN-73-77 Installation Manual
King KT-76-78 Installation Manual
King KT-79 Installation Manual
King KT-79 Installation Manual
King KX-125 Installation Manual
King KX-155-165 Installation Manual
King KX-165A Installation Manual
King KY-196-197 Installation Manual
Narco AT-50-50A Installation Manual
Narco CP-IXX Installation Manual
Narco DME-195 Installation Manual
Narco DME-890 Installation Manual
Narco DME-891 Installation Manual
Narco MK-12-D-E Installation Manual
Narco Nav-10-14 Installation Manual
Narco Nav-110-114 Installation Manual
Narco Nav-121-122 Installation Manual
Narco Nav-824-825 Installation Manual
Narco UGR-2-2A Installation Manual
PS-Engineering 8000 Installation Manual
PulseLite 1200 Installation Manual
Shadin ADC-200 Installation Manual
UPS GX-50 Installation Manual
UPS GX-50 Wiring Manual
UPS SL-30 Installation Manual
Operation ManualsApollo 604 Manual
Century IIB Pilot’s Operating Handbook
Century III Pilot’s Operating Handbook
EI AV-17 Manual
Garmin 195 Manual
Garmin 296 Manual
Garmin 396 Manual
Garmin 430 Pilot Guide
Garmin GMA-340 Manual
Garmin GNS-480 Manual
Garmin GTX-330 Manual
Garmin GXM-30 Manual
King KCS-55A Manual
King KLN-90B Manual
King KLN-90B Pilots’ Guide
King KLN-94 Pilots’ Guide
King KMA-24 Manual
King KMD-150 Manual
King KT-76A Manual
King Silver Crown
L3 SkyWatch Guide
L3 WX-1000 POH
Lowrance 300 Manual
PS-Engineering 8000 Manual
PulseLite 1200 Manual
S-TEC 20-30 Manual
S-TEC 55 Manual
S-TEC ST-360 Manual
UPS GX-50 Manual
UPS MX-20 Manual
Marketing PiecesKing KLN-94 Flyer
King KLN-94 Review
King KMD-150 Flyer
S-TEC App Guide
Everything You NEED TO KNOW about Piper “Legacy” AutopilotsBy Bob Hart – www.AvionixHelp.com
If you’ve been following my articles, you know that I believe an autopilot (even a basic wing-leveler) belongs in any aircraft that intends to spend time in the clouds in IFR flight. The less time a pilot has spent in IFR conditions (e.g. a low time pilot with a fresh IFR ticket), the more an autopilot is needed.
After World War II and the Korean Conflict came to an end, the U.S. economy moved in a very positive –UP! The General Aviation industry, primed by the economy and pilots with wartime flying experience, grew quickly with Cessna, Piper, and Beechcraft taking the lead in small aircraft sales. Increased sales spawned innovation, not only in aircraft design, but also in avionics. By the late ‘50s, several companies, including ARC (for Cessna), Tactair, Lear, Sperry, Brittain, and Mitchell were also developing autopilots.
Don Mitchell designed his first autopilot and installed it in a Beechcraft in the early ‘50s. By 1961, Mitchell/Edo Aire had six models of autopilot available, ranging from the basic Co-pilot, a single-axis wing-leveler with heading lock to the Commander, a fully automatic, two-axis system with features way beyond its day. This became the foundation for Piper Autopilots and later, in 1983, Mitchell/Edo Aire became Century Flight Systems who continue to make autopilots for Piper Aircraft.
Early Piper Autopilots were made by Mitchell and labeled as Piper Autopilots until Century Flight Systems was established and, at that point, autopilots found in Piper aircraft were labeled Century models. Piper first offered a factory installed autopilot in 1958, though it was an option even on the relatively basic Tripacer. The Aztec was the workhorse of the Piper fleet at the time, and autopilots were a popular option even then. Now, let’s look at some autopilot basics and then we’ll take a look at the legacy autopilots that were available from the Piper factory starting with the earliest versions.
First, autopilots are available in single-axis (roll) or two-axis (roll and pitch).
NOTE: Some autpilots offer a third-axis or yaw damper option (or separate yaw damper) which is designed to compensate for excessive adverse yaw caused by aircraft design (as in the case of the V-tail Bonanza) or excessive turbulence. These are most often found in twins and charter aircraft to dampen yaw and make the flight more comfortable for passengers.
Autopilots are also available as either rate-based (where the turn coordinator is the primary sensing device) orattitude/position-based (where the artificial horizon serves as the sensor for roll and pitch. There are pros and cons to both types. Turn coordinators are electric and are considerably more reliable than a vacuum-based artificial horizon. Plus, a vacuum pump failure is more likely to occur vs. a total electrical failure. In short, an all-electric, rate-based autopilot has less pathways to an inflight failure. Today, all STEC autopilots are rate-based. On the other hand, attitude/position-based autopilots are reported as “smoother” and better able to handle turbulence.
Single axis (roll only) autopilots keep the wings level and most can track an omni, GPS or localizer. Some, when interfaced to a directional gyro with autopilot interface (heading “bug”) or HSI can track a heading. This is a real nice feature if you spend a lot of time in controlled airspace where vectoring is frequent. Roll-only autopilots have no way to sense or control altitude.
Conversely, two-axis autopilots provide full roll control (as above), can maintain a heading (with DG/HSI option) and can hold an altitude. In fact, better two-axis autopilots can add additional altitude features like altitude pre-select and vertical speed control. Some even have glidescope tracking capability and, frequently, automatic trim—or at the least an “out of trim” warning. It should be fairly obvious that the more sophisticated the aircraft, the more sophisticated the autopilot.
Here’s a look at the legacy autopilots that were available from Piper starting with the early days.
AutoFlite
Based on Mitchell’s basic model, the Piper AutoFlite was a simple, remote-mounted wing leveler. It consisted of a remote-mounted rate gyro, a servo, and a panel-mounted switch. Turn it on, and the wings would (or should) remain level. An optional tracker was available which allowed the unit to track a VOR bearing. It worked, but reliability was an issue.
As more capable autopilots were developed using vacuum gyros, the all-electric AutoFlite was sometimes installed as a backup to the system in the event of a failure of the primary autopilot. The original AutoFlite is not a viable unit today, and it’s rare to find one installed—much less one that’s installed AND still functioning.
AutoFlite II
The AutoFlite II was an upgrade to the original model with a panel-mounted turn-coordinator (rate gyro), which also served as the controller and a servo. Omni tracking was built-in. It was an all-electric, rate-based wing-leveler with tracking, but had no ability to maintain a heading. This unit went through a few modifications over the years and later became known as the Century I, which is still being marketed by Century today.
AutoControl I
This was the earliest version of a Piper attitude/position-based autopilot. Back then, Mitchell was also making gyros, and the AutoControl I was a single-axis autopilot that used a 4-inch attitude gyro as the roll sensor. Nav tracking was not available. Big sean finally famous zip. This system is not viable today.
Altimatic II
Prior to 1965, Piper had introduced their first attempt at a two-axis, attitude-based autopilot in the Altimatic II. It had some unique features like dial-up altitude and autotrim (back then, the need to re-trim was sensed by cable tension). Today, an Altimatic II is not a viable system and maintenance is a poor investment. One issue with early autopilots was the use/limitations of germanium transistors. However, silicon-based transistors became available in the mid-‘60s and brought with them a significant improvement in autopilot reliability.
AutoControl III/IIIB
Introduced around 1965, the Piper Autocontrol III is a attitude-based, single-axis autopilot with full roll control including nav, localizer and (today) GPS tracking. It also introduced heading hold with the addition of an autopilot directional gyro or HIS, and an optional radio coupler was available that allowed the pilot to chose between multiple nav sources or heading hold. The AutoControl III was a step up in capability and reliability; and, asside from most units being very “tired,” it’s still considered a viable autopilot today. Around 1973, Piper introduced the AutoControl IIIB with a redesigned controller and improved design and electronics, thus moving reliability up yet another notch.
One weakness in these systems is servo failure, which can sometimes lead to an electrical failure. Nonetheless, these autopilots are worth maintaining. Frankly, most need a complete rebuild, but you should be able to completely overhaul an AutoControl III or IIIB for 1/3 to 1/2 the cost of a new, comparable STEC autopilot—and some go so far as to suggest that the AutoControl III/IIIB, as an attitude-based autopilot, can actually fly the aircraft better! A completely overhauled and aligned AutoControl III/IIIB should provide you with a reliable and safe autopilot for many years.
Altimatic III/IIIB/IIIC
Around the same time the new AutoControl III was being introduced, Piper introduced the Altimatic III. This was a full-featured two-axis autopilot with all the capability of the AutoControls in roll-axis, but with the addition of altitude hold and autotrim was standard. Plus, an optional radio coupler allowed access to multiple nav sources. Glideslope coupling and altitude pre-select were also optional.
Note that the early versions had issues with altitude pre-select, and the altitude bellows were prone to failure. As a result, Piper introduced the IIIB around 1971 and the IIIB-1 a few years later, and each offered some improvements. The IIIB-1 added a better altitude control sensor and pitch wheel oeration.
Reliability improved with each model. The Altimatic IIIC was the final stage in the growth of the Piper two-axis autopilots and actually came from the Century III (described below) with a different controller and faceplate. At this point, you have a relatively modern, full-featured two-axis autopilot with autotrim, altitude hold, and glideslope coupling. The IIIC is very capable and reliable as long as it remains healthy. Again, all of these units are worth supporting, but many have been in the field for up to 50 years. I’m inclined to suggest that the IIIB through the IIIC are your better bet and, as I mentioned before, you should be able to completely overhaul and align one of these autopilots for 1/3 to 1/2 the cost of a new comparable model.
AltimaticV/X
Piper also offered two high-end autopilots designed specifically for their heavy metal aircraft. The Altimatic V was actually a Bendix FCS810 autopilot with Piper markings. The Altimatic X (10) was actually a Century IV with a different faceplate. Both are complex, high-end, full-featured autopilots with Flight Directors designed for the needs of pilots flying Navajos and other heavy twins. We only mention them here to note that if you’re seeking service on one of these units, you really need a shop that knows them!
In 1983, as mentioned, Edo Aire/Mitchell became Century Flight Systems and for me things got a little confusing. It’s important, when you talk about these autopilots, that you know whether they are Century or Edo Aire/Mitchell. Here’s an example: a Piper Autocontrol IIIB is a single-axis roll only autopilot by Edo Aire, while a Century III is a two-axis, full-featured autopilot with altitude hold and all the bells and whistles.
Here’s what we saw from Century after the change:
Century Flight Systems
Once the handle on these autopilots changed from Edo Aire/Mitchell to Century Flight Systems, model names changed as well. The Piper AutoFlite II became the Century 1. This is the only dedicated* single-axis, rate-based autopilot still available from Century and it maintains the same capability—it offers roll axis only with tracking, but no heading hold. The lack of heading hold makes this a less desirable option, unless you never find yourself being vectored in controlled airspace. But let’s face it, heading hold is a big plus when the FAA is telling you what to do!
* The modern Century 2000 can be ordered as single-axis.
The Piper AutoControl III and IIIB became the Century II and IIB. These are single-axis autopilots with tracking and heading control either through a DG or HSI. These are very common in Piper legacy aircraft like the Cherokee line. I had a IIB in my Cherokee Six. It was simple and very reliable!
The Piper Altimatic III, IIIB, and IIIC became the Century III. These are two-axis, full-featured autopilots with most of the bells and whistles, including altitude hold and glideslope coupling. These are common in Piper performance singles and light twins.
The Piper Altimatic X (10) became the Century IV How to speed up civ 6. and filled the role of a full-featured autopilot with Flight Director for the heavier Piper twins.
Century Flight Systems went on to produce the Century 21, 31, 41, and later, the Century 2000 and Trident models. You can sometimes find these retrofitted in later Piper models.
This should give you a decent overview of the Piper and Century Autopilot models and their capability. So, let’s talk about other things you need to know about your autopilot!
No matter what autopilot you have, whether Edo Aire or Century, it’s important that you know everyting about it—and know it well. This may seem obvious, but it’s not. Your aircraft has a flight manual that should include everything you need to know about your autopilot. However, many shops that work on autopilots shockingly report that many aircraft owners have actually never read the Flight Manual Supplement for their autopilot!
Aug 17, 2020 Resident Evil 3 (2020). Changes eye color to green. Manual download; Preview file contents. Replaces default Jill eye color on JSG Color. Greek eye charm. The Resident Evil remake featured her standard Resident Evil 3: Nemesis outfit and a new military outfit. In the 2020 remake version of Resident Evil 3, Jill’s original outfit has been updated; her blue tube top is replaced with a blue v-neck sleeveless shirt with a white tank top underneath, no longer wearing a white sweater tied to her waist.
When things go wrong with your autopilot or your electric trim system, you need to know what to do—you need to know its components; you need to know its features; and, perhaps most importantly, you need to know how to disengage it!
When things are not going well, immediately disengaging the autopilot should be an oavious response—especially in IFR conditions. Generally speaking, there are three ways to do this:
*Most autopilots have (or should have) a disconnect switch on the yoke. Things can go sour quickly and this is the quickest way to sotp your autopilot from causing it. Be sure to test this switch regularly to make sure it works.
*The on/off switch on the autopilot’s controller.
*Pulling the circuit breaker should render the autopilot null. I recommend markig or otherwise identifying the autopilot’s circuit breaker so that you can find it quickly. Also make sure that your circuit breaker can be pulled—some of the early ones can’t.
Initia
https://diarynote.indered.space
*Century Iv Autopilot Installation Manual
*Century Three Autopilot Installation
*Century Iii Autopilot Installation Manual
This video is a step-by-step guide on how to use the altitude select feature of the Piper Altimatic III Autopilot, currently installed in our Piper Seneca (N.AVIONICS LIBRARY
*Almost all Century IIIs were installed with manual/auto electric trim There are some potential maintenance issues: The Century III is a very old design and the earliest versions were plagued with problems due to a circuit board fabrication method that used ’griplets’ instead of plated thru-holes for connections.
*Download File PDF Century Iii B Autopilot Install Manual Century Iii B Autopilot Install 68S75 6. ROLL (AILERON) ENGAGEMENT The Century IIB incorporates a fail safe electrical engage and disengage mechanism in the roll servo which is operated by the A/P ON-OFF Rocker Switch in the console. When only this switch is.Maintenance ManualsCentury II-IIB-III Service Manual
Collins DCE-400 Maintenance Manual
Collins DME-45x Maintenance Manual
Collins TDR-35x Maintenance Manual
Collins TDR-950 Maintenance Manual
Collins VHF-25xx Maintenance Manual
Collins VIR-35x Maintenance Manual
Garmin 400 Maintenance Manual
King KA-51 Maintenance Manual
King KA-51A Maintenance Manual
King KA-51B Maintenance Manual
King KA-52 Maintenance Manual
King KA-57 Maintenance Manual
King KG-102 Maintenance Manual
King KG-102A Maintenance Manual
King KI-201-209 Maintenance Manual
King KI-204 Maintenance Manual
King KI-209A Maintenance Manual
King KI-211-214 Maintenance Manual
King KI-525 Maintenance Manual
King KI-525A Maintenance Manual
King KLN-90B Maintenance Manual
King KLX-135 Maintenance Manual
King KMA-20 Maintenance Manual
King KMT-112 Maintenance Manual
King KN-53 Maintenance Manual
King KN-62-64 Maintenance Manual
King KN-65-65A Maintenance Manual
King KN-72-75 Maintenance Manual
King KN-73-77 Maintenance Manual
King KR-87 Maintenance Manual
King KT-76-78 Maintenance Manual
King KT-76C Maintenance Manual
King KT-79 Maintenance Manual
King KTS-152 Maintenance Manual
King KTS-153 Maintenance Manual
King KX-125 Maintenance Manual
King KX-155-165 Maintenance Manual
King KX-165A Maintenance Manual
King KX-170B Maintenance Manual
King KY-196-197 Maintenance Manual
Narco AT-50-50A Maintenance Manual
Narco CP-IXX Maintenance Manual
Narco DME-195 Maintenance Manual
Narco DME-890 Maintenance Manual
Narco DME-891 Maintenance Manual
Narco MK-12-D-E Maintenance Manual
Narco Nav-10-14 Maintenance Manual
Narco Nav-110-114 Maintenance Manual
Narco Nav-121-122 Maintenance Manual
Narco Nav-824-825 Maintenance Manual
Narco UGR-2-2A Maintenance Manual
S-TEC Flight Line Service Manual
Installation ManualsCollins DCE-400 Installation Manual
Collins DME-45x Installation Manual
Collins TDR-35x Installation Manual
Collins TDR-950 Installation Manual
Collins VHF-25xx Installation Manual
Collins VIR-35x Installation Manual
DAC GDC-31 Installation Manual
Eaton 582 Series Manual
Eaton 584 Series Manual
Garmin 340 Installation Manual
Garmin 400 Installation Manual
Garmin 480 Installation Manual
Garmin GTX-327 Installation Manual
Garmin GTX-330 Installation Manual
King KCS-55A Installation Manual
King KI-201-209 Installation Manual
King KI-211-214 Installation Manual
King KLN-90B Installation Manual
King KLN-94 Installation Manual
King KLX-135 Installation Manual
King KLX-135A Installation Manual
King KMA-20 Installation Manual
King KN-53 Installation Manual
King KN-62 Installation Manual
King KN-62-64 Installation Manual
King KN-63 Installation Manual
King KN-65-65A Installation Manual
King KN-72-75 Installation Manual
King KN-73-77 Installation Manual
King KT-76-78 Installation Manual
King KT-79 Installation Manual
King KT-79 Installation Manual
King KX-125 Installation Manual
King KX-155-165 Installation Manual
King KX-165A Installation Manual
King KY-196-197 Installation Manual
Narco AT-50-50A Installation Manual
Narco CP-IXX Installation Manual
Narco DME-195 Installation Manual
Narco DME-890 Installation Manual
Narco DME-891 Installation Manual
Narco MK-12-D-E Installation Manual
Narco Nav-10-14 Installation Manual
Narco Nav-110-114 Installation Manual
Narco Nav-121-122 Installation Manual
Narco Nav-824-825 Installation Manual
Narco UGR-2-2A Installation Manual
PS-Engineering 8000 Installation Manual
PulseLite 1200 Installation Manual
Shadin ADC-200 Installation Manual
UPS GX-50 Installation Manual
UPS GX-50 Wiring Manual
UPS SL-30 Installation Manual
Operation ManualsApollo 604 Manual
Century IIB Pilot’s Operating Handbook
Century III Pilot’s Operating Handbook
EI AV-17 Manual
Garmin 195 Manual
Garmin 296 Manual
Garmin 396 Manual
Garmin 430 Pilot Guide
Garmin GMA-340 Manual
Garmin GNS-480 Manual
Garmin GTX-330 Manual
Garmin GXM-30 Manual
King KCS-55A Manual
King KLN-90B Manual
King KLN-90B Pilots’ Guide
King KLN-94 Pilots’ Guide
King KMA-24 Manual
King KMD-150 Manual
King KT-76A Manual
King Silver Crown
L3 SkyWatch Guide
L3 WX-1000 POH
Lowrance 300 Manual
PS-Engineering 8000 Manual
PulseLite 1200 Manual
S-TEC 20-30 Manual
S-TEC 55 Manual
S-TEC ST-360 Manual
UPS GX-50 Manual
UPS MX-20 Manual
Marketing PiecesKing KLN-94 Flyer
King KLN-94 Review
King KMD-150 Flyer
S-TEC App Guide
Everything You NEED TO KNOW about Piper “Legacy” AutopilotsBy Bob Hart – www.AvionixHelp.com
If you’ve been following my articles, you know that I believe an autopilot (even a basic wing-leveler) belongs in any aircraft that intends to spend time in the clouds in IFR flight. The less time a pilot has spent in IFR conditions (e.g. a low time pilot with a fresh IFR ticket), the more an autopilot is needed.
After World War II and the Korean Conflict came to an end, the U.S. economy moved in a very positive –UP! The General Aviation industry, primed by the economy and pilots with wartime flying experience, grew quickly with Cessna, Piper, and Beechcraft taking the lead in small aircraft sales. Increased sales spawned innovation, not only in aircraft design, but also in avionics. By the late ‘50s, several companies, including ARC (for Cessna), Tactair, Lear, Sperry, Brittain, and Mitchell were also developing autopilots.
Don Mitchell designed his first autopilot and installed it in a Beechcraft in the early ‘50s. By 1961, Mitchell/Edo Aire had six models of autopilot available, ranging from the basic Co-pilot, a single-axis wing-leveler with heading lock to the Commander, a fully automatic, two-axis system with features way beyond its day. This became the foundation for Piper Autopilots and later, in 1983, Mitchell/Edo Aire became Century Flight Systems who continue to make autopilots for Piper Aircraft.
Early Piper Autopilots were made by Mitchell and labeled as Piper Autopilots until Century Flight Systems was established and, at that point, autopilots found in Piper aircraft were labeled Century models. Piper first offered a factory installed autopilot in 1958, though it was an option even on the relatively basic Tripacer. The Aztec was the workhorse of the Piper fleet at the time, and autopilots were a popular option even then. Now, let’s look at some autopilot basics and then we’ll take a look at the legacy autopilots that were available from the Piper factory starting with the earliest versions.
First, autopilots are available in single-axis (roll) or two-axis (roll and pitch).
NOTE: Some autpilots offer a third-axis or yaw damper option (or separate yaw damper) which is designed to compensate for excessive adverse yaw caused by aircraft design (as in the case of the V-tail Bonanza) or excessive turbulence. These are most often found in twins and charter aircraft to dampen yaw and make the flight more comfortable for passengers.
Autopilots are also available as either rate-based (where the turn coordinator is the primary sensing device) orattitude/position-based (where the artificial horizon serves as the sensor for roll and pitch. There are pros and cons to both types. Turn coordinators are electric and are considerably more reliable than a vacuum-based artificial horizon. Plus, a vacuum pump failure is more likely to occur vs. a total electrical failure. In short, an all-electric, rate-based autopilot has less pathways to an inflight failure. Today, all STEC autopilots are rate-based. On the other hand, attitude/position-based autopilots are reported as “smoother” and better able to handle turbulence.
Single axis (roll only) autopilots keep the wings level and most can track an omni, GPS or localizer. Some, when interfaced to a directional gyro with autopilot interface (heading “bug”) or HSI can track a heading. This is a real nice feature if you spend a lot of time in controlled airspace where vectoring is frequent. Roll-only autopilots have no way to sense or control altitude.
Conversely, two-axis autopilots provide full roll control (as above), can maintain a heading (with DG/HSI option) and can hold an altitude. In fact, better two-axis autopilots can add additional altitude features like altitude pre-select and vertical speed control. Some even have glidescope tracking capability and, frequently, automatic trim—or at the least an “out of trim” warning. It should be fairly obvious that the more sophisticated the aircraft, the more sophisticated the autopilot.
Here’s a look at the legacy autopilots that were available from Piper starting with the early days.
AutoFlite
Based on Mitchell’s basic model, the Piper AutoFlite was a simple, remote-mounted wing leveler. It consisted of a remote-mounted rate gyro, a servo, and a panel-mounted switch. Turn it on, and the wings would (or should) remain level. An optional tracker was available which allowed the unit to track a VOR bearing. It worked, but reliability was an issue.
As more capable autopilots were developed using vacuum gyros, the all-electric AutoFlite was sometimes installed as a backup to the system in the event of a failure of the primary autopilot. The original AutoFlite is not a viable unit today, and it’s rare to find one installed—much less one that’s installed AND still functioning.
AutoFlite II
The AutoFlite II was an upgrade to the original model with a panel-mounted turn-coordinator (rate gyro), which also served as the controller and a servo. Omni tracking was built-in. It was an all-electric, rate-based wing-leveler with tracking, but had no ability to maintain a heading. This unit went through a few modifications over the years and later became known as the Century I, which is still being marketed by Century today.
AutoControl I
This was the earliest version of a Piper attitude/position-based autopilot. Back then, Mitchell was also making gyros, and the AutoControl I was a single-axis autopilot that used a 4-inch attitude gyro as the roll sensor. Nav tracking was not available. Big sean finally famous zip. This system is not viable today.
Altimatic II
Prior to 1965, Piper had introduced their first attempt at a two-axis, attitude-based autopilot in the Altimatic II. It had some unique features like dial-up altitude and autotrim (back then, the need to re-trim was sensed by cable tension). Today, an Altimatic II is not a viable system and maintenance is a poor investment. One issue with early autopilots was the use/limitations of germanium transistors. However, silicon-based transistors became available in the mid-‘60s and brought with them a significant improvement in autopilot reliability.
AutoControl III/IIIB
Introduced around 1965, the Piper Autocontrol III is a attitude-based, single-axis autopilot with full roll control including nav, localizer and (today) GPS tracking. It also introduced heading hold with the addition of an autopilot directional gyro or HIS, and an optional radio coupler was available that allowed the pilot to chose between multiple nav sources or heading hold. The AutoControl III was a step up in capability and reliability; and, asside from most units being very “tired,” it’s still considered a viable autopilot today. Around 1973, Piper introduced the AutoControl IIIB with a redesigned controller and improved design and electronics, thus moving reliability up yet another notch.
One weakness in these systems is servo failure, which can sometimes lead to an electrical failure. Nonetheless, these autopilots are worth maintaining. Frankly, most need a complete rebuild, but you should be able to completely overhaul an AutoControl III or IIIB for 1/3 to 1/2 the cost of a new, comparable STEC autopilot—and some go so far as to suggest that the AutoControl III/IIIB, as an attitude-based autopilot, can actually fly the aircraft better! A completely overhauled and aligned AutoControl III/IIIB should provide you with a reliable and safe autopilot for many years.
Altimatic III/IIIB/IIIC
Around the same time the new AutoControl III was being introduced, Piper introduced the Altimatic III. This was a full-featured two-axis autopilot with all the capability of the AutoControls in roll-axis, but with the addition of altitude hold and autotrim was standard. Plus, an optional radio coupler allowed access to multiple nav sources. Glideslope coupling and altitude pre-select were also optional.
Note that the early versions had issues with altitude pre-select, and the altitude bellows were prone to failure. As a result, Piper introduced the IIIB around 1971 and the IIIB-1 a few years later, and each offered some improvements. The IIIB-1 added a better altitude control sensor and pitch wheel oeration.
Reliability improved with each model. The Altimatic IIIC was the final stage in the growth of the Piper two-axis autopilots and actually came from the Century III (described below) with a different controller and faceplate. At this point, you have a relatively modern, full-featured two-axis autopilot with autotrim, altitude hold, and glideslope coupling. The IIIC is very capable and reliable as long as it remains healthy. Again, all of these units are worth supporting, but many have been in the field for up to 50 years. I’m inclined to suggest that the IIIB through the IIIC are your better bet and, as I mentioned before, you should be able to completely overhaul and align one of these autopilots for 1/3 to 1/2 the cost of a new comparable model.
AltimaticV/X
Piper also offered two high-end autopilots designed specifically for their heavy metal aircraft. The Altimatic V was actually a Bendix FCS810 autopilot with Piper markings. The Altimatic X (10) was actually a Century IV with a different faceplate. Both are complex, high-end, full-featured autopilots with Flight Directors designed for the needs of pilots flying Navajos and other heavy twins. We only mention them here to note that if you’re seeking service on one of these units, you really need a shop that knows them!
In 1983, as mentioned, Edo Aire/Mitchell became Century Flight Systems and for me things got a little confusing. It’s important, when you talk about these autopilots, that you know whether they are Century or Edo Aire/Mitchell. Here’s an example: a Piper Autocontrol IIIB is a single-axis roll only autopilot by Edo Aire, while a Century III is a two-axis, full-featured autopilot with altitude hold and all the bells and whistles.
Here’s what we saw from Century after the change:
Century Flight Systems
Once the handle on these autopilots changed from Edo Aire/Mitchell to Century Flight Systems, model names changed as well. The Piper AutoFlite II became the Century 1. This is the only dedicated* single-axis, rate-based autopilot still available from Century and it maintains the same capability—it offers roll axis only with tracking, but no heading hold. The lack of heading hold makes this a less desirable option, unless you never find yourself being vectored in controlled airspace. But let’s face it, heading hold is a big plus when the FAA is telling you what to do!
* The modern Century 2000 can be ordered as single-axis.
The Piper AutoControl III and IIIB became the Century II and IIB. These are single-axis autopilots with tracking and heading control either through a DG or HSI. These are very common in Piper legacy aircraft like the Cherokee line. I had a IIB in my Cherokee Six. It was simple and very reliable!
The Piper Altimatic III, IIIB, and IIIC became the Century III. These are two-axis, full-featured autopilots with most of the bells and whistles, including altitude hold and glideslope coupling. These are common in Piper performance singles and light twins.
The Piper Altimatic X (10) became the Century IV How to speed up civ 6. and filled the role of a full-featured autopilot with Flight Director for the heavier Piper twins.
Century Flight Systems went on to produce the Century 21, 31, 41, and later, the Century 2000 and Trident models. You can sometimes find these retrofitted in later Piper models.
This should give you a decent overview of the Piper and Century Autopilot models and their capability. So, let’s talk about other things you need to know about your autopilot!
No matter what autopilot you have, whether Edo Aire or Century, it’s important that you know everyting about it—and know it well. This may seem obvious, but it’s not. Your aircraft has a flight manual that should include everything you need to know about your autopilot. However, many shops that work on autopilots shockingly report that many aircraft owners have actually never read the Flight Manual Supplement for their autopilot!
Aug 17, 2020 Resident Evil 3 (2020). Changes eye color to green. Manual download; Preview file contents. Replaces default Jill eye color on JSG Color. Greek eye charm. The Resident Evil remake featured her standard Resident Evil 3: Nemesis outfit and a new military outfit. In the 2020 remake version of Resident Evil 3, Jill’s original outfit has been updated; her blue tube top is replaced with a blue v-neck sleeveless shirt with a white tank top underneath, no longer wearing a white sweater tied to her waist.
When things go wrong with your autopilot or your electric trim system, you need to know what to do—you need to know its components; you need to know its features; and, perhaps most importantly, you need to know how to disengage it!
When things are not going well, immediately disengaging the autopilot should be an oavious response—especially in IFR conditions. Generally speaking, there are three ways to do this:
*Most autopilots have (or should have) a disconnect switch on the yoke. Things can go sour quickly and this is the quickest way to sotp your autopilot from causing it. Be sure to test this switch regularly to make sure it works.
*The on/off switch on the autopilot’s controller.
*Pulling the circuit breaker should render the autopilot null. I recommend markig or otherwise identifying the autopilot’s circuit breaker so that you can find it quickly. Also make sure that your circuit breaker can be pulled—some of the early ones can’t.
Initia
https://diarynote.indered.space
コメント